Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 22(1): e3002464, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38206904

RESUMO

Trichromacy is unique to primates among placental mammals, enabled by blue (short/S), green (medium/M), and red (long/L) cones. In humans, great apes, and Old World monkeys, cones make a poorly understood choice between M and L cone subtype fates. To determine mechanisms specifying M and L cones, we developed an approach to visualize expression of the highly similar M- and L-opsin mRNAs. M-opsin was observed before L-opsin expression during early human eye development, suggesting that M cones are generated before L cones. In adult human tissue, the early-developing central retina contained a mix of M and L cones compared to the late-developing peripheral region, which contained a high proportion of L cones. Retinoic acid (RA)-synthesizing enzymes are highly expressed early in retinal development. High RA signaling early was sufficient to promote M cone fate and suppress L cone fate in retinal organoids. Across a human population sample, natural variation in the ratios of M and L cone subtypes was associated with a noncoding polymorphism in the NR2F2 gene, a mediator of RA signaling. Our data suggest that RA promotes M cone fate early in development to generate the pattern of M and L cones across the human retina.


Assuntos
Placenta , Tretinoína , Gravidez , Adulto , Animais , Humanos , Feminino , Tretinoína/metabolismo , Placenta/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Retina/metabolismo , Opsinas/metabolismo , Opsinas de Bastonetes/genética , Primatas , Mamíferos/metabolismo
2.
Stem Cell Reports ; 18(5): 1138-1154, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37163980

RESUMO

Human retinal organoid transplantation could potentially be a treatment for degenerative retinal diseases. How the recipient retina regulates the survival, maturation, and proliferation of transplanted organoid cells is unknown. We transplanted human retinal organoid-derived cells into photoreceptor-deficient mice and conducted histology and single-cell RNA sequencing alongside time-matched cultured retinal organoids. Unexpectedly, we observed human cells that migrated into all recipient retinal layers and traveled long distances. Using an unbiased approach, we identified these cells as astrocytes and brain/spinal cord-like neural precursors that were absent or rare in stage-matched cultured organoids. In contrast, retinal progenitor-derived rods and cones remained in the subretinal space, maturing more rapidly than those in the cultured controls. These data suggest that recipient microenvironment promotes the maturation of transplanted photoreceptors while inducing or facilitating the survival of migratory cell populations that are not normally derived from retinal progenitors. These findings have important implications for potential cell-based treatments of retinal diseases.


Assuntos
Degeneração Retiniana , Análise da Expressão Gênica de Célula Única , Humanos , Camundongos , Animais , Diferenciação Celular/fisiologia , Retina , Células Fotorreceptoras Retinianas Cones , Degeneração Retiniana/terapia , Organoides/transplante
3.
Front Cell Dev Biol ; 10: 878350, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493094

RESUMO

Humans rely on visual cues to navigate the world around them. Vision begins with the detection of light by photoreceptor cells in the retina, a light-sensitive tissue located at the back of the eye. Photoreceptor types are defined by morphology, gene expression, light sensitivity, and function. Rod photoreceptors function in low-light vision and motion detection, and cone photoreceptors are responsible for high-acuity daytime and trichromatic color vision. In this review, we discuss the generation, development, and patterning of photoreceptors in the human retina. We describe our current understanding of how photoreceptors are patterned in concentric regions. We conclude with insights into mechanisms of photoreceptor differentiation drawn from studies of model organisms and human retinal organoids.

4.
J Cell Biol ; 219(11)2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32997737

RESUMO

Polo-like kinases (PLKs) play widely conserved roles in orchestrating meiotic chromosome dynamics. However, how PLKs are targeted to distinct subcellular localizations during meiotic progression remains poorly understood. Here, we demonstrate that the cyclin-dependent kinase CDK-1 primes the recruitment of PLK-2 to the synaptonemal complex (SC) through phosphorylation of SYP-1 in C. elegans. SYP-1 phosphorylation by CDK-1 occurs just before meiotic onset. However, PLK-2 docking to the SC is prevented by the nucleoplasmic HAL-2/3 complex until crossover designation, which constrains PLK-2 to special chromosomal regions known as pairing centers to ensure proper homologue pairing and synapsis. PLK-2 is targeted to crossover sites primed by CDK-1 and spreads along the SC by reinforcing SYP-1 phosphorylation on one side of each crossover only when threshold levels of crossovers are generated. Thus, the integration of chromosome-autonomous signaling and a nucleus-wide crossover-counting mechanism partitions holocentric chromosomes relative to the crossover site, which ultimately defines the pattern of chromosome segregation during meiosis I.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Pareamento Cromossômico , Segregação de Cromossomos , Meiose , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Proteína Quinase CDC2/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Análise Espacial , Complexo Sinaptonêmico
5.
Science ; 362(6411)2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30309916

RESUMO

The mechanisms underlying specification of neuronal subtypes within the human nervous system are largely unknown. The blue (S), green (M), and red (L) cones of the retina enable high-acuity daytime and color vision. To determine the mechanism that controls S versus L/M fates, we studied the differentiation of human retinal organoids. Organoids and retinas have similar distributions, expression profiles, and morphologies of cone subtypes. S cones are specified first, followed by L/M cones, and thyroid hormone signaling controls this temporal switch. Dynamic expression of thyroid hormone-degrading and -activating proteins within the retina ensures low signaling early to specify S cones and high signaling late to produce L/M cones. This work establishes organoids as a model for determining mechanisms of human development with promising utility for therapeutics and vision repair.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Organoides/crescimento & desenvolvimento , Retina/crescimento & desenvolvimento , Células Fotorreceptoras Retinianas Cones/classificação , Hormônios Tireóideos/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular , Células-Tronco Embrionárias/metabolismo , Humanos , Mutação , Organoides/metabolismo , Proteólise , Retina/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...